Software effort estimation through clustering techniques of RBFN network

نویسندگان

  • Usha Gupta
  • Manoj Kumar
چکیده

Now a day’s software cost/effort estimation is a very complex job to do. Several estimation techniques have been developed in this regard. This assessment of parameters like, time, cost, and number of staff required sequentially which in turn is to be done at an early stage. Constructive Cost model which is also known as COCOMO model was one of the best model to estimate the cost and time in person month of a software project. The estimation of cost and time supports the project planning and tracking, as well as also controls the expenses of software development process. The accurate effort estimation will lead to improve the project success rate. In this paper, the main focus is on finding the accuracy of estimation of effort/cost of software using radial basis function neural network (RBFN) incorporating ANN-COCOMO II which can be used for functional approximation. This model estimates the total effort of software development according to the characteristics of COCOMO-II along with radial basis clustering techniques. The RBFN network is much faster than other network because the learning process in this network has two stages and both stages can be made efficient by appropriate learning algorithms. The RBFN network uses COCOMO-II dataset for training.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach For Estimating Software Effort Using RBFN Network

The prediction of software development effort has been focused mostly on the accuracy comparison of algorithmic models rather than on the suitability of the approach for building software effort prediction systems. Several estimation techniques have been developed to predict the Effort estimation. In this paper the main focus is on investigating the accuracy of the prediction of effort using RB...

متن کامل

Experimental Evaluation of Algorithmic Effort Estimation Models using Projects Clustering

One of the most important aspects of software project management is the estimation of cost and time required for running information system. Therefore, software managers try to carry estimation based on behavior, properties, and project restrictions. Software cost estimation refers to the process of development requirement prediction of software system. Various kinds of effort estimation patter...

متن کامل

Software Effort Estimation Models Using Radial Basis Function Network

Software Effort Estimation is the process of estimating the effort required to develop software. By estimating the effort, the cost and schedule required to estimate the software can be determined. Accurate Estimate helps the developer to allocate the resource accordingly in order to avoid cost overrun and schedule overrun. Several methods are available in order to estimate the effort among whi...

متن کامل

Bridging the semantic gap for software effort estimation by hierarchical feature selection techniques

Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...

متن کامل

A New Fuzzy Clustering Based Method to Increase the Accuracy of Software Development Effort Estimation

Project planning plays a significant role in software projects so that imprecise estimations often lead to the project faults or dramatic outcomes for the project team. In recent years, various methods have been proposed to estimate the software development effort accurately. Among all proposed methods the non algorithmic methods by using soft computing techniques have presented considerable re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013